Robust and Unbiased Variance of GLM Coefficients for Misspecified Autocorrelation and Hemodynamic Response Models in fMRI
نویسنده
چکیده
As a consequence of misspecification of the hemodynamic response and noise variance models, tests on general linear model coe cients are not valid. Robust estimation of the variance of the general linear model (GLM) coecients in fMRI time series is therefore essential. In this paper an alternative method to estimate the variance of the GLM coe cients accurately is suggested and compared to other methods. The alternative, referred to as the sandwich, is based primarily on the fact that the time series are obtained from multiple exchangeable stimulus presentations. The analytic results show that the sandwich is unbiased. Using this result, it is possible to obtain an exact statistic which keeps the 5% false positive rate. Extensive Monte Carlo simulations show that the sandwich is robust against misspeci cation of the autocorrelations and of the hemodynamic response model. The sandwich is seen to be in many circumstances robust, computationally efficient, and flexible with respect to correlation structures across the brain. In contrast, the smoothing approach can be robust to a certain extent but only with specific knowledge of the circumstances for the smoothing parameter.
منابع مشابه
Robust presurgical functional MRI at 7 T using response consistency
Functional MRI is valuable in presurgical planning due to its non-invasive nature, repeatability, and broad availability. Using ultra-high field MRI increases the specificity and sensitivity, increasing the localization reliability and reducing scan time. Ideally, fMRI analysis for this application should identify unreliable runs and work even if the patient deviates from the prescribed task ti...
متن کاملLocally Estimated Hemodynamic Response Function and Activation Detection Sensitivity in Heroin-Cue Reactivity Study
Introduction: A fixed hemodynamic response function (HRF) is commonly used for functional magnetic resonance imaging (fMRI) analysis. However, HRF may vary from region to region and subject to subject. We investigated the effect of locally estimated HRF (in functionally homogenous parcels) on activation detection sensitivity in a heroin cue reactivity study. Methods: We proposed...
متن کاملEvaluation of Hemodynamic Response Function in Vision and Motor Brain Regions for the Young and Elderly Adults
Introduction: Prior studies comparing Hemodynamic Response Function (HRF) in the young and elderly adults based on fMRI data have reported inconsistent findings for brain vision and motor regions in healthy aging. It is shown that the averaging method employed in all previous works has caused this inconsistency. The averaging is so sensitive to outliers and noise. However, fMRI data are o...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملOptimal spatial regularisation of autocorrelation estimates in fMRI analysis.
In the General Linear Model (GLM) framework for the statistical analysis of fMRI data, the problem of temporal autocorrelations in the residual signal (after regression) has been frequently addressed in the open literature. There exist various methods for correcting the ensuing bias in the statistical testing, among which the prewhitening strategy, which uses a prewhitening matrix for rendering...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2009 شماره
صفحات -
تاریخ انتشار 2009